Malaysian Journal of Mathematical Sciences 10(S) February: 389–407 (2016) Special Issue: The 3^{rd} International Conference on Mathematical Applications in Engineering 2014 (ICMAE'14)

 MALAYSIAN JOURNAL OF MATHEMATICAL SCIENCES

 PERTANIKA
 Journal homepage: http://einspem.upm.edu.my/journal

Threshold Resonances and Eigenvalues of Some Schrödinger Operators on Lattices

Muminov, Z.*1 and Fudziah, I.²

¹Malaysia - Japan International Institute of Technology, Universiti Teknologi Malaysia, 54100, Kuala Lumpur, Malaysia ²Department of Mathematics, Faculty of Science and Institute for Mathematical Research, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia

 $E\text{-mail: *,}^{1} zimuminov@gmail.com, zimuminov@mail.ru \\ ^{2} fudziah@science.upm.edu.my$

ABSTRACT

The discrete Schrödinger operator $H_{\lambda\mu}$ on the subspace of even functions of the Hilbert space $\ell^2(\mathbb{Z}^n)$, with finite potential depending on $\lambda, \mu \in \mathbb{R}_{>0}$, is considered.

The dependence of the threshold resonance and eigenvalues on the parameters λ, μ and n are explicitly derived.

Keywords: Discrete Schrödinger operators, threshold resonance, eigenvalues, lattice

1. Introduction

In (Albeverio et al., 2006) an explicit example of a $-\Delta - V$ on the possesses both a threshold resonance and a threshold eigenvalue, where $-\Delta$ stands for the

standard discrete Laplacian and V is a multiplication operator by the function $V(x) = \mu \delta_{x0} + \lambda \sum_{|s|=1} \delta_{xs}$, where $\lambda, \mu \in \mathbb{R}^2_{>0}$ and δ_{xs} is the Kroneker delta.

Beyond, the authors of (Lakaev and Bozorov, 2009) considered the restriction of this operator to the Hilbert space $\ell_e^2(\mathbb{Z}^3)$ of all even functions in $\ell_e^2(\mathbb{Z}^3)$. They investigated the dependence of the number of eigenvalues of $H_{\lambda\mu}$, on λ, μ ($\lambda > 0, \mu > 0$), and they showed that all eigenvalues arise either from a threshold resonance or from threshold eigenvalues under a variation of the interaction energy.

Moreover, they also proved that the first eigenvalue of the Hamiltonian H arises only from a threshold resonance under a variation of the interaction energy.

This result for the continuous two-particle Schrödinger operator was revealed by Newton (see p.1353 in (Newton, 1977)) and proved by Tamura (Tamura, 1993, Lemma 1.1) using a result by Simon (Simon, 1981).

In case $\lambda = 0$, Hiroshima et.al. (Hiroshima et al., 2012) showed that an embedded eigenvalue does appear for $n \ge 5$ but does not for $1 \le n \le 4$.

Our aim here is to investigate the spectrum of $H_{\lambda\mu}$, specifically, embedded eigenvalues and resonances at the edges of the continuous spectrum for any dimension $n \geq 1$.

2. The Dicrete Schrödinger Operator

2.1 The Discrete Laplacian

Let \mathbb{Z}^n be the *n*-dimensional lattice, i.e. *n*-dimensional integer set. The Hilbert space of ℓ^2 sequences on \mathbb{Z}^n is denoted by $\ell^2(\mathbb{Z}^n)$, and we use $\ell_e^2(\mathbb{Z}^n)$ to denote its subspace of all even functions.

On the Hilbert space $\ell_e^2(\mathbb{Z}^n)$, the discrete Laplacian Δ is usually associated with the following self-adjoint (bounded) multidimensional Toeplitz-type operator (see, e.g., (Mattis, 1986)):

$$\Delta = \frac{1}{2} \sum_{\substack{s \in \mathbb{Z}^n \\ |s|=1}} (T(s) - T(0)),$$

where T(y) is described as a sum of the two shift operators by y, and -y,

Malaysian Journal of Mathematical Sciences

V

 $y \in \mathbb{Z}^n$:

V

$$(T(y)f)(x) = \frac{1}{2}(f(x+y) + f(x-y)), \quad f \in \ell_e^2(\mathbb{Z}^n), \, x \in \mathbb{Z}^n.$$

Let a notation $\mathbb{T}^n = (\mathbb{R}/2\pi\mathbb{Z})^n = (-\pi,\pi]^n$ means the *n*-dimensional torus (the first Brillouin zone, i.e., the dual group of \mathbb{Z}^n) equipped its Haar measure, and let $L^2_e(\mathbb{T}^n)$ denote the subspace of all even functions of $L^2(\mathbb{T}^n)$ -the Hilbert space of L^2 functions on \mathbb{T}^n .

The Laplacian Δ , in the momentum representation, i.e. in the Fourier representation, is introduced as

$$\widehat{\Delta} = \mathcal{F}^{-1} \Delta \mathcal{F},$$

where \mathcal{F} stands for the standard Fourier transform $\mathcal{F}: L^2(\mathbb{T}^n) \longrightarrow \ell^2(\mathbb{Z}^n)$, and $\widehat{\Delta}$ acts as the multiplication operator

$$(\widehat{\Delta}f)(p) = -\mathfrak{e}(p)\widehat{f}(p), \quad \widehat{f} = \mathcal{F}f, \ p \in \mathbb{T}^n,$$

where

$$\mathfrak{e}(p) = \sum_{j=1}^{n} (1 - \cos p_j), \quad p \in \mathbb{T}^n.$$

In the physical literature, the function $\mathfrak{e}(\cdot)$ being a real valued-function on \mathbb{T}^n , is called the *dispersion relation* of the Laplace operator.

2.2 The Discrete Schrödinger Operator

The discrete Schrödinger operator in $\ell_e^2(\mathbb{Z}^n)$ is defined as

$$H_{\lambda\mu} = -\Delta - \widehat{V}(x),$$

where the potential $\hat{V}(x)$ depends on two parameters $\lambda, \mu \in \mathbb{R}_{>0}$ and satisfies

$$\widehat{V}(x) = \begin{cases} \mu, & \text{if } x = 0\\ \lambda, & \text{if } |x| = 1\\ 0, & \text{if } |x| > 0 \end{cases}, \quad x \in \mathbb{Z}^n,$$

which provides $H_{\lambda\mu}$ to be a bounded self-adjoint operator.

Malaysian Journal of Mathematical Sciences

391

2.3 The Discrete Schrödinger Operator in Momentum Representation

The operator $H_{\lambda\mu}$ in the momentum representation acts in the Hilbert space $L^2_e(\mathbb{T}^n)$ as

$$H_{\lambda\mu} = H_0 - V,$$

where H_0 acts as the multiplication operator

$$(H_0f)(p) = \mathfrak{e}(p)f(p), \quad f \in L^2_e(\mathbb{T}^n), \ p \in \mathbb{T}^n$$

and V is an integral operator convolution type

$$(Vf)(p) = (2\pi)^{-\frac{n}{2}} \int_{\mathbb{T}^n} v(p-s)f(s)ds, \quad f \in L^2_e(\mathbb{T}^n), \ p \in \mathbb{T}^n.$$

Here $v(\cdot)$ is the Fourier transform of $\widehat{V}(\cdot)$ computed as

$$v(p) = \frac{1}{(2\pi)^{\frac{n}{2}}} \left(\mu + \lambda \sum_{i=1}^{n} \cos p_i \right),$$

and it gives for the potential operator V the following representation

$$V = \mu \langle \cdot, \mathbf{c}_0 \rangle \mathbf{c}_0 + \frac{\lambda}{2} \sum_{j=1}^n \langle \cdot, \mathbf{c}_j \rangle \mathbf{c}_j$$

where $\{c_0, c_j : j = 1, ..., n\}$ is the following orthonormal system in $L^2_e(\mathbb{T}^n)$

$$c_0(p) = \frac{1}{(2\pi)^{\frac{n}{2}}} = \text{const}, \quad c_j(p) = \frac{\sqrt{2}}{(2\pi)^{\frac{n}{2}}} \cos p_j, \quad j = 1, \dots, n, \ p \in \mathbb{T}^n,$$

and $\langle \cdot, \cdot \rangle$ means the inner product on $L^2_e(\mathbb{T}^n)$.

2.4 The Essential Spectrum

The perturbation V of the operator $H_{\lambda\mu}$ is a finite operator and, therefore, in accordance with the Weyl theorem on the stability of the essential spectrum the equality $\sigma_{ess}(H_{\lambda\mu}) = \sigma_{ess}(H_0)$ holds, and moreover $\sigma_{ess}(H_{\lambda\mu}) = \sigma(H_0)$, and hence the essential spectrum $\sigma_{ess}(H_{\lambda\mu})$ fills in the following interval on the real axis:

$$\sigma_{\rm ess}(H_{\lambda\mu}) = [\mathfrak{e}_m, \mathfrak{e}_M]$$

where

392

$$\mathbf{e}_m = \min_{p \in \mathbb{T}^n} \mathbf{e}(p) = 0, \quad \mathbf{e}_M = \max_{p \in \mathbb{T}^n} \mathbf{e}(p) = 2n.$$

Malaysian Journal of Mathematical Sciences

V

Theorem 2.1. The essential spectrum is a pure absolute continuous spectrum, i.e. $\sigma_{ess}(H_{\lambda\mu}) = \sigma_{ac}(H_{\lambda\mu}) = [\mathfrak{e}_m, \mathfrak{e}_M].$

Proof. For the proof see (Bellissard and Schulz-Baldes, 2012).

3. The Birman-Schwinger Principle

The Birman-Schwinger principle allows us to reduce the problem to study of the compact (finite) operators.

Denote by $(H_0 - z)^{-1}$ the resolvent of H_0 , where $z \in \mathbb{C} \setminus [\mathfrak{e}_m, \mathfrak{e}_M]$.

Let us write the following equality

$$(H_0 - z)^{-1} V_{\lambda\mu} = B_1 B_2, \tag{1}$$

where B_1, B_2 are vector valued operators defined by

$$B_{1} = \left(\sqrt{\mu}(H_{0}-z)^{-1/2}c_{0}, \sqrt{\frac{\lambda}{2}}(H_{0}-z)^{-1/2}c_{1}, \dots, \sqrt{\frac{\lambda}{2}}(H_{0}-z)^{-1/2}c_{n}\right) : \mathbb{C}^{n+1} \to L_{e}^{2}(\mathbb{T}^{n}),$$

$$(2)$$

$$B_{2} = \left(\sqrt{\mu}\langle \cdot, (H_{0}-z)^{-1/2}c_{0}\rangle, \sqrt{\frac{\lambda}{2}}\langle \cdot, (H_{0}-z)^{-1/2}c_{1}\rangle, \dots, \sqrt{\frac{\lambda}{2}}\langle \cdot, (H_{0}-z)^{-1/2}c_{n}\rangle\right)^{T} : L_{e}^{2}(\mathbb{T}^{n}) \to \mathbb{C}^{n+1}.$$

Note that $a_{ij}(z) := \langle (H_0 - z)^{-1} c_j, c_i \rangle, i, j = 0, 1, \dots, n$, is a multiplication map on \mathbb{C} , and hence

$$G(z) = B_2 B_1 : \mathbb{C}^{n+1} \to \mathbb{C}^{n+1}$$

is described as an $(n+1) \times (n+1)$ matrix operator.

Lemma 3.1. The number $z \in \mathbb{C} \setminus [\mathfrak{e}_m, \mathfrak{e}_M]$ is an eigenvalue of $H_{\lambda\mu}$ iff $\nu = 1$ is an eigenvalue of G(z).

Proof. The relation

$$Hf = zf \iff f = (H_0 - z)^{-1} Vf \tag{3}$$

gives that the number $z \in \mathbb{C} \setminus [\mathfrak{e}_m, \mathfrak{e}_M]$ is an eigenvalue of H iff $\nu = 1$ is an eigenvalue of $(H_0 - z)^{-1}V$ in (1).

Due to spectrum of the product operators both operators $(H_0 - z)^{-1}V = B_1B_2$ and $G(z) = B_2B_1 : \mathbb{C}^{n+1} \to \mathbb{C}^{n+1}$ have the same nonzero eigenvalues with the same multiplicities, a fact that completes the proof.

Lemma 3.2. Let $z \in \mathbb{C} \setminus [\mathfrak{e}_{\min}, \mathfrak{e}_{\max}]$. The vector $\vec{Z} = (w_0, w_1, \dots, w_n) \in \mathbb{C}^{n+1}$, is an eigenvector of G(z) associated to $\nu = 1$, iff $f = B_1 \vec{Z}$, i.e.

$$f(p) = \frac{(2\pi)^{-n}}{\mathfrak{e}(p) - z} \left(\mu w_0 + \frac{\lambda}{\sqrt{2}} \sum_{j=1}^n w_j \cos p_j \right) \tag{4}$$

is an eigenfunction of $H_{\lambda\mu}$ corresponding to z.

Proof. Due to spectrum of the product operators $G(z)\vec{Z} = \vec{Z}$, i.e. $B_2B_1\vec{Z} = \vec{Z}$ iff $f = (H_0 - z)^{-1}Vf = B_1B_2f$, where $f = B_1\vec{Z}$. Since (2), the function f coincides with (4). This fact together $f = (H_0 - z)^{-1}Vf$, i.e. $((H_0 - z) - V)f = 0$ ends the proof.

Since $H_{\lambda\mu}$ is self-adjoint and V is positive, further it is enough to study the discrete spectrum $H_{\lambda\mu}$ in $(-\infty, \mathfrak{e}_m]$.

3.1 The Determinant of $G(z) - E_{n+1}$

Since the function $\mathfrak{e}(q) = \mathfrak{e}(q_1, \ldots, q_n)$ is invariant with respect to the permutations of its arguments q_1, \ldots, q_n , the integrals

$$\begin{aligned} a(z) &:= \langle \mathbf{c}_{0}, (H_{0} - z)^{-1} \mathbf{c}_{0} \rangle = \frac{1}{(2\pi)^{n}} \int_{\mathbb{T}^{n}} \frac{dq}{\mathfrak{e}(q) - z}, \\ b(z) &:= \frac{1}{\sqrt{2}} \langle \mathbf{c}_{0}, (H_{0} - z)^{-1} \mathbf{c}_{j} \rangle = \frac{1}{\sqrt{2}} \langle \mathbf{c}_{j}, (H_{0} - z)^{-1} \mathbf{c}_{0} \rangle = \frac{1}{(2\pi)^{n}} \int_{\mathbb{T}^{n}} \frac{\cos q_{j} dq}{\mathfrak{e}(q) - z}, \\ j &= 1, \dots, n \\ c(z) &:= \frac{1}{2} \langle \mathbf{c}_{j}, (H_{0} - z)^{-1} \mathbf{c}_{j} \rangle = \frac{1}{(2\pi)^{n}} \int_{\mathbb{T}^{n}} \frac{\cos^{2} q_{j} dq}{\mathfrak{e}(q) - z}, \\ j &= 1, \dots, n, \\ d(z) &:= \frac{1}{2} \langle \mathbf{c}_{i}, (H_{0} - z)^{-1} \mathbf{c}_{j} \rangle = \frac{1}{2} \langle \mathbf{c}_{j}, (H_{0} - z)^{-1} \mathbf{c}_{i} \rangle = \frac{1}{(2\pi)^{n}} \int_{\mathbb{T}^{n}} \frac{\cos q_{i} \cos q_{j} dq}{\mathfrak{e}(q) - z}, \\ i, j &= 1, \dots, n, \quad i \neq j, \end{aligned}$$

do not depend on the particular choice of the indices i, j.

Malaysian Journal of Mathematical Sciences

From the definition of G(z), it's coefficients g_{ij} are described as

$$g_{00}(z) = \mu a(z), \quad g_{0j}(z) = \frac{\lambda}{\sqrt{2}} b(z), \quad j = 1, \dots, n,$$
$$g_{i0}(z) = \sqrt{2}\mu b(z), \quad g_{ii}(z) = \lambda c(z), \quad g_{ij}(z) = \lambda d(z), \quad j = 1, \dots, n, j \neq i,$$

Hence the matrix G(z) has the form

$$G(z) = \begin{pmatrix} \mu a(z) & \frac{\lambda}{\sqrt{2}}b(z) & \dots & \dots & \frac{\lambda}{\sqrt{2}}b(z)\\ \sqrt{2}\mu b(z) & \lambda c(z) & \lambda d(z) & \dots & \lambda d(z)\\ \vdots & \lambda d(z) & \ddots & \dots & \vdots\\ \vdots & \vdots & \dots & \ddots & \lambda d(z)\\ \sqrt{2}\mu b(z) & \lambda d(z) & \dots & \lambda d(z) & \lambda c(z) \end{pmatrix}.$$
 (5)

Using the assertions on the calculation of determinants we take

$$\det(G(z) - E_{n+1}) = \delta_1(\lambda, \mu : z) \cdot \delta_0(\lambda : z),$$

where E_{n+1} is the identity $(n+1) \times (n+1)$ matrix and

$$\delta_1(\lambda,\mu:z) = (1-\mu a(z))(1-\lambda(c(z)+(n-1)d(z))) - n\mu\lambda b^2(z), \quad \delta_0(\lambda:z) = (\lambda(c(z)-d(z))-1)^{n-1}.$$

Lemma 3.3. The number $z \in \mathbb{C} \setminus [\mathfrak{e}_m, \mathfrak{e}_M]$ is an eigenvalue of $H_{\lambda\mu}$ iff $\delta_1(\lambda, \mu : z) = 0$ or $\delta_0(\lambda : z) = 0$.

Proof. This lemma is a corollary of Lemma 3.1.

395

Let N(z) be the number of eigenvalues of $H_{\lambda\mu}$ smaller than $z, z \leq \mathfrak{e}_{\mathrm{m}}$ counted with their multiplicities.

Now for self-adjoint upper bounded operator A in the abstract Hilbert space, we define $n(\nu, A)$ -the number of eigenvalues of A larger than ν (counted with their multiplicities), where $\nu > \sup \sigma_{ess}(A)$.

Lemma 3.4. Let $z \leq \mathfrak{e}_m$. Then

$$N(z) = n(1, G(z)) \tag{6}$$

and

$$N(z) \le n+1. \tag{7}$$

Malaysian Journal of Mathematical Sciences

V

Proof. The equality (6) follows using the variational principle.

The relation

V

$$\langle Hf, f \rangle < z \langle f, f \rangle \iff \langle g, g \rangle < \langle (H_0 - z)^{-1/2} V(H_0 - z)^{-1/2} g, g \rangle, \quad g = (H_0 - z)^{-1/2} f$$
(8)

and $\operatorname{Ker}(H_0 - z) = \{0\}$ give that

$$N(z) = n(1, (H_0 - z)^{-1/2}V(H_0 - z)^{-1/2})$$

Due to spectrum of the product operators both operators $(H_0 - z)^{-1}V = B_1B_2$ and $G(z) = B_2B_1 : \mathbb{C}^{n+1} \to \mathbb{C}^{n+1}$ have the same nonzero eigenvalues with the same multiplicities, a fact that completes the proof of (6), where B_1, B_2 are vector valued operators defined by (2).

Since G(z) has rank less than or equal n + 1 and (6), we get (7).

4. Properties of $det(G(z) - E_{n+1})$

Set

$$\alpha(z) := c(z) + (n-1)d(z), \gamma(z) := a(z)(c(z) + (n-1)d(z)) - nb^2(z)$$
(9)

Lemma 4.1. For any z < 0 we have

$$a(z) + b(z) = \frac{1}{n} + \frac{z}{n}a(z),$$

$$\alpha(z) = (n - z)b(z),$$

$$\gamma(z) = b(z)$$

Proof. See Appendix 1.

V

4.1 Zeroes of $\delta_0(\lambda : z)$

Let us write $\delta_0(\lambda : z) = (\varrho_0(\lambda : z))^{n-1}$ where

$$\varrho_0(\lambda:z) = \lambda(c(z) - d(z)) - 1.$$

Set

$$\lambda_c = (c-d)^{-1}$$

396

where

V

$$c - d := \lim_{z \to 0^-} c(z) - d(z).$$

Lemma 4.2. (a) For any $\lambda \leq \lambda_c$ the function $\rho_0(\lambda : ...)$ has no zero in $(-\infty, \mathfrak{e}_m)$.

(a') If
$$\lambda = \lambda_c$$
 then $\varrho_0(\lambda : \mathfrak{e}_m) = 0$.

(b) For any $\lambda > \lambda_c$ the function $\varrho_0(\lambda : ...)$ has a unique zero in $(-\infty, \mathfrak{e}_m)$ with multiplicity one.

Proof. Since $\frac{\partial}{\partial z} \varrho_0(\lambda : z) > 0$, $z \in (-\infty, \mathfrak{e}_m)$, the function $\varrho_0(\lambda : ...)$ is strictly monotone increasing in $(-\infty, \mathfrak{e}_m)$.

Then $\varrho_0(\lambda : z) \leq \varrho_0(\lambda_c : z) < \varrho_0(\lambda_c : \mathfrak{e}_m) = 0$ proves (a) and (a').

b) Since $\varrho_0(\lambda : \mathfrak{e}_m) > \varrho_0(\lambda_c : \mathfrak{e}_m) = 0$ and $\lim_{z \to -\infty} \varrho_0(\lambda : z) = -1$ there exists zeros of $\varrho_0(\lambda : \cdot)$ in the interval $(-\infty, \mathfrak{e}_m)$

Due to monotonicity of $\rho_0(\lambda : \cdot)$ this zero is a unique and has multiplicity one.

Corollary 4.1. (a) For any $\lambda \leq \lambda_c$ the function $\delta_0(\lambda : ...)$ has no zero in $(-\infty, \mathfrak{e}_m)$.

(a') If $\lambda = \lambda_c$ then $\delta_0(\lambda : \mathfrak{e}_m) = 0$.

(b) For any $\lambda > \lambda_c$ the function $\delta_0(\lambda : ...)$ has a unique zero in $(-\infty, \mathfrak{e}_m)$ with multiplicity n - 1.

This corollary and (7) give

Corollary 4.2. The function $\delta_1(\lambda, \mu : \cdot)$ may have at most two zeros.

Proof. Since $\natural \{z \in (-\infty, \mathfrak{e}_m) : \delta_0(\lambda : z) = 0\} = 0$ or $\natural \{z \in (-\infty, \mathfrak{e}_m) : \delta_0(\lambda : z) = 0\} = n - 1$ and N(z) <= n + 1 we get the proof of the lemma. \Box

Malaysian Journal of Mathematical Sciences

397

4.2 The zeros of $\delta_1(\lambda, \mu : z)$

4.2.1 Case $n \ge 3$

V

The $\delta_1(\lambda, \mu : z)$ is had the view

$$\delta_1(\lambda,\mu:z) = 1 - \mu a(z) - \lambda \alpha(z) + \lambda \mu \gamma(z)$$

Since $\mathfrak{e}(\cdot)$ has a unique non-degenerate minimum at the origin, in case $n \geq 3$, the integrals a(z), b(z), c(z) and d(z) have continuation at $z = \mathfrak{e}_m$, and we denote them a, b, c and d, respectively.

According to the two equalities Lemma 4.1 and (9) we have

$$\delta_1(\lambda,\mu:\mathfrak{e}_m) = 1 - \mu a - \lambda nb + \lambda \mu b = 0, \quad \delta_1(\lambda,\mu:\mathfrak{e}_m) = (1 - \mu a - \lambda \alpha + \lambda \mu \gamma)$$

which is hyperbola with asymptotic $\lambda = \frac{a}{b}$ and $\mu = n$ in the quarter $(\lambda, \mu) \in \mathbb{R}^2_{\geq 0}$.

Then the brunches of this hyperbola

$$\begin{split} \partial G_0 &= \{ (\lambda, \mu) \in \mathbb{R}^2_{>0} : \delta_1(\lambda, \mu : \mathfrak{e}_m) = 0, \quad \lambda = \frac{a}{b} \}, \\ \partial G_2 &= \{ (\lambda, \mu) \in \mathbb{R}^2_{>0} : \delta_1(\lambda, \mu : \mathfrak{e}_m) = 0, \quad \lambda = \frac{a}{b} \}, \end{split}$$

split $\mathbb{R}^2_{>0}$ into three areas

$$\begin{split} G_0 &= \{ (\lambda, \mu) \in \mathbb{R}^2_{>0} : \delta_1(\lambda, \mu : \mathfrak{e}_m) > 0, \quad \lambda < \frac{a}{b} \}, \\ G_1 &= \{ (\lambda, \mu) \in \mathbb{R}^2_{>0} : \delta_1(\lambda, \mu : \mathfrak{e}_m) < 0 \}, \\ G_2 &= \{ (\lambda, \mu) \in \mathbb{R}^2_{>0} : \delta_1(\lambda, \mu : \mathfrak{e}_m) > 0, \quad \lambda > \frac{a}{b} \}, \end{split}$$

Let $1 - \mu a(\mathfrak{e}_m) < 0$ resp. $1 - \lambda \alpha(\mathfrak{e}_m) < 0$. Then as the proof of Lemma 4.2 we can show that there exist their unique zeroes in $(-\infty, \mathfrak{e}_m)$ of the functions $1 - \mu a(\cdot) < 0$ and $1 - \lambda \alpha(\cdot) < 0$, and we denote them as z_{μ} resp. z_{λ} .

Lemma 4.3. (a) Let $(\lambda, \mu) \in G_0$. Then $\delta_1(\lambda, \mu : z)$ has no zero in $(-\infty, \mathfrak{e}_m)$. (b) Let $(\lambda, \mu) \in G_1$. Then $\delta_1(\lambda, \mu : z)$ has unique zero in $(-\infty, \mathfrak{e}_m)$. (c) Let $(\lambda, \mu) \in G_2$. Then $\delta_1(\lambda, \mu : z)$ has two zeroes $z_1(\lambda, \mu)$ and $z_2(\lambda, \mu)$ in $(-\infty, \mathfrak{e}_m)$. Moreover $z_1(\lambda, \mu) < z_2(\lambda, \mu)$.

Proof. (a) Let $(\lambda, \mu) \in G_0$. Then according to the monotonicity of $a(z), \alpha(z), b(z)$ we get

$$1 - \mu a(z) > 1 - \mu a(\mathbf{e}_m), \quad 1 - \lambda \alpha(z) > 1 - \lambda \alpha(\mathbf{e}_m), \quad -\lambda \mu b^2(z) > -\lambda \mu b^2(\mathbf{e}_m)$$
for any z in $(-\infty, \mathbf{e}_m)$.

And hence

V

$$\begin{split} \delta_1(\lambda,\mu:z) &= \left(1-\mu a(z)\right)\left(1-\lambda\alpha(z)\right) - \lambda\mu n b^2(z) > \\ \left(1-\mu a(\mathfrak{e}_m)\right)\left(1-\lambda\alpha(\mathfrak{e}_m)\right) - \lambda\mu b^2(\mathfrak{e}_m) = \delta_1(\lambda,\mu:\mathfrak{e}_m) = 0 \end{split}$$

Then according Lemma 3.3 the assertion a) is correct.

(b) Let $(\lambda, \mu) \in G_1$. Then $\delta_1(\lambda, \mu : \mathfrak{e}_m) < 0$ implies there exists z_0 in $(-\infty, \mathfrak{e}_m)$, such that $\delta_1(\lambda, \mu : z_0) = 0$.

In that case if z_0 is not unique then due to properties of analytic functions $\delta_1(\lambda, \mu: \cdot)$ has at lest three zeroes (with multiplicity). This fact is contradiction to Corollary 4.2, and hence z_0 is unique.

(c) Let
$$(\lambda, \mu) \in G_2$$
. Then $1 - \mu a(\mathfrak{e}_m) < 0$ and $1 - \lambda \alpha(\mathfrak{e}_m) < 0$.

Setting $\zeta_{\min} = \min\{z_{\lambda}, z_{\mu}\}, \ \zeta_{\max} = \max\{z_{\lambda}, z_{\mu}\}$ we see that $\delta_1(\lambda, \mu : \zeta_{\min}) = -\lambda \mu b^2(\zeta_{\min}) < 0, \ \delta_1(\lambda, \mu : \zeta_{\max}) = -\lambda \mu b^2(\zeta_{\max}) < 0$ which prove δ_1 has two zeros z_1 and z_2 satisfying

$$z_1 < \zeta_{\min} \le \zeta_{\max} < z_2 < \mathfrak{e}_m.$$

V

4.3 Case n = 1, 2

Using Lemma 4.1 we write

$$\delta_1(\lambda,\mu:z) = (-n\lambda - \mu + \lambda\mu)a(z) + 1 + \lambda - \frac{\lambda\mu}{n} + \left(\lambda(2z - \frac{z^2}{n}) - \frac{\lambda\mu}{n}z\right)a(z) - \frac{\lambda}{n}z.$$
(10)

In case n = 1. Elementary calculations give

$$a(z) = \frac{1}{\sqrt{-z}\sqrt{2-z}}$$

and hence from 10 we get

Malaysian Journal of Mathematical Sciences

V

Lemma 4.4. For any $\mu, \lambda \geq 0$ the asymptotics

$$\Delta_1(\mu,\lambda;z) = C_{-\frac{1}{2}}(\mu,\lambda)(-z)^{-\frac{1}{2}} + C_0(\mu,\lambda) + O((-z)^{\frac{1}{2}}), \quad z \to 0^-,$$
(11)

is valid, where

V

$$C_{-\frac{1}{2}}(\mu,\lambda) = \frac{\mu\lambda - (\mu + \lambda)}{\sqrt{2}}, \quad C_0(\mu,\lambda) = 1 - \lambda(\mu - 1).$$

This lemma helps to receive the following assertion

Proposition 4.1. Let $\mu, \lambda > 0$. Further

- (a) if $\mu\lambda < \mu + \lambda$, then $\lim_{z \to 0^-} \Delta_1(\mu, \lambda; z) = -\infty;$
- $(a') \ \ in \ case \ \mu\lambda > \mu + \lambda, \ we \ have \ \lim_{z \to 0^-} \Delta_1(\mu,\lambda;z) = +\infty;$
- (b) when $\mu\lambda = \mu + \lambda$, the limit $\lim_{z \to 0-} \Delta_1(\mu, \lambda; z) = 1 \mu < 0$ holds.

In case n = 2. The asymptotics

$$a(z) = -\frac{\sqrt{2}}{2\pi}\ln(-z) + (\frac{1}{2} - \frac{\sqrt{2}}{\pi}) + O(-z),$$

can be found in (Lakaev and Tilovova, 1994), and since it's proof is long we refer to this paper for the proof.

The last asymptotics and (10) lead

Lemma 4.5. Let $\lambda, \mu \geq 0$. Then

$$\delta_1(\mu,\lambda;z) = C(\mu,\lambda)\ln(-z) + C_0(\mu,\lambda) + O(-z), \quad z \to 0-,$$

as $z \to 0-$, where

$$C(\mu,\lambda) = \frac{1}{\sqrt{2\pi}} \Big((\mu+2\lambda) - \mu\lambda \Big), \quad C_0 = (\frac{1}{2} - \frac{\sqrt{2}}{\pi}) \Big(-(\mu+2\lambda) + \mu\lambda \Big) + 1 + \lambda + \frac{\lambda\mu}{2}$$

Hence we get

400

Proposition 4.2. Let $\lambda, \mu \geq 0$. Then

(a) $\lim_{z\to 0^-} \delta_1(\mu,\lambda;z) = -\infty$, if $\mu + 2\lambda - \mu\lambda < 0$ (b) $\lim_{z\to 0^-} \delta_1(\mu,\lambda;z) = +\infty$, if $\mu + 2\lambda - \mu\lambda > 0$ (c) $\lim_{z\to 0^-} \delta_1(\mu,\lambda;z) = 1 - 2\lambda < 0$, if $\mu + 2\lambda - \mu\lambda = 0$

We use the notation $P(\lambda, \mu)$ for hyperbolas $\mu + 2\lambda - \mu\lambda = 0$ when n = 2and $\mu + \lambda - \mu\lambda = 0$ when n = 1.

Only one brunche of this hyperbola

V

$$\partial G_2 = \{ (\lambda, \mu) \in \mathbb{R}^2_{>0} : P(\lambda, \mu) = 0 \},\$$

exists in $\mathbb{R}^2_{>0}$ and then we split $\mathbb{R}^2_{>0}$ into two areas

$$G_1 = \{ (\lambda, \mu) \in \mathbb{R}^2_{>0} : P(\lambda, \mu) > 0 \}, G_2 = \{ (\lambda, \mu) \in \mathbb{R}^2_{>0} : P(\lambda, \mu) < 0 \}.$$

We have the following lemma

Lemma 4.6. Assume n = 1, 2. (a) Let $(\lambda, \mu) \in G_1 \cup \partial G_2$. Then $\delta_1(\lambda, \mu : z)$ has unique zero in $(-\infty, \mathfrak{e}_m)$.

(b) Let $(\lambda, \mu) \in G_2$. Then $\delta_1(\lambda, \mu : z)$ has two zeroes $z_1(\lambda, \mu)$ and $z_2(\lambda, \mu)$ in $(-\infty, \mathfrak{e}_m)$. Moreover $z_1(\lambda, \mu) < z_2(\lambda, \mu)$.

Proof. The proof could be taken as Lemma 4.3.

V

5. The View of Eigenfunctions

When $\delta_0(\lambda; z) = 0$ then the solutions of G(z)u = u, $u \in \mathbb{C}^{n+1}$, has form $u_1 = (0, 1, -1, 0, \dots, 0), \quad u_2 = (0, 1, 0, -1, 0, \dots, 0), \quad u_{n-1} = (0, 1, 0, \dots, 0, 1)$ and hence by Lemma 3.2 corresponding eigenfunctions of $H_{\lambda\mu}$ have the forms

$$g_j(p) = (H_0 - z)^{-1} (\cos p_1 - \cos p_j), \quad j = 2, \dots, n.$$

Due to Lemma 4.3, the function $\delta_1(z)$ may have at most two zeroes in $(-\infty, \mathfrak{e}_m)$.

V

V

Without of loss generality, we assume z_1 and z_2 be zeroes of δ_1 . Then the corresponding equation has form

$$u_i = \left(\frac{n\lambda}{\sqrt{2}}b(z_i)(1-\mu a(z_i))^{-1}, 1, \dots, 1\right), \quad i = 1, 2,$$

and by virtue of Lemma 3.2, corresponding eigenfunction of $H_{\lambda\mu}$ has the forms

$$g_i(p) = (H_0 - z)^{-1} \left(\frac{n\lambda}{\sqrt{2}} b(z_i)(1 - \mu a(z_i))^{-1} + \frac{\lambda}{\sqrt{2}} \sum_{j=1}^n \cos p_j\right), \quad i = 1, 2.$$

6. The Resonance and Embedded Eigenvalues

Definition 6.1. If the solution of the equation $H_{\lambda\mu}f = \mathfrak{e}_m f$ belong to $\ell_e^2(\mathbb{Z}^n)$ (does not belong to $\ell_e^2(\mathbb{Z}^n)$) then we say that $H_{\lambda\mu}$ has threshold eigenvalues (threshold resonance).

6.1 The Resonance and Embedded Eigenvalues Corresponding to δ_1

In case n = 2, the integrals a(z), b(z), c(z) and d(z) have no continuation at $z = \mathfrak{e}_m$, but we can define

$$c-d := \lim_{z \to \mathfrak{e}_m = 0} c(z) - d(z),$$

and then we get the continuation of δ_1 at $z = \mathfrak{e}_m$, when $n \ge 2$.

Using the similar procedure in Section 5 and Lemma 4.1 we get

Lemma 6.1. Let $\lambda_c = (a-c)^{-1}$ then the threshold $\mathfrak{e}_m = 0$ is an eigenvalue of $H_{\lambda\mu}$ with eigenfunctions

$$g(p) = \frac{\cos p_1 - \cos p_j}{\mathfrak{e}(p)}, \quad j = 2, \dots, n$$

If $\lambda \neq \lambda_c$, the operator $H_{\lambda\mu}$ has no threshold resonance and embedded eigenvalue.

6.2 The Resonance and Embedded Eigenvalues corresponding to δ_1

Since Lemmas 4.1, 4.2 the function δ_1 has no continuation at $z = \mathfrak{e}_m$, when n = 1, 2.

Malaysian Journal of Mathematical Sciences

Lemma 6.2. Let $\delta_1(\lambda, \mu; 0) = 0$. Then $H_{\lambda\mu}$ has a threshold resonance (embedded eigenvalue with multiplicity one) if n = 3, 4 ($n \ge 5$) with eigenvector

$$g_{\lambda,\mu}(p) = \frac{1}{\mathfrak{e}(p)} \Phi_i(p), \quad \Phi(p) = \frac{n\lambda}{\sqrt{2}} b(1-\mu a)^{-1} + \frac{\lambda}{\sqrt{2}} \sum_{j=1}^n \cos p_j.$$
 (12)

Proof. Let

$$\delta_1(\lambda,\mu;0) = 0.$$

Using the similar procedure in Section 5 and Lemma 4.3 we get $H_{\lambda\mu}f = 0$ has a solution having view (12).

Since $\mu = n$ is asymptotics of the hyperbola $\delta_1(\lambda, \mu : \mathfrak{e}_m) = 0$ we have

$$\Phi(0) = \frac{n\lambda}{\sqrt{23}}b(1-\mu a)^{-1}(n-\mu) \neq 0.$$

Then due to $\int_{\mathbb{T}^n} \frac{dp}{\mathfrak{e}^2(p)} = \infty$ as n = 3, 4 and $\int_{\mathbb{T}^n} \frac{dp}{\mathfrak{e}^2(p)} < \infty$ as $n \geq 5$ the eigenfunction $g_{\lambda,\mu}(p)$ does not belong to $L^2_e(\mathbb{T}^n)$, but does to $L^1_e(\mathbb{T}^n)$, as n = 3, 4, while it belongs to $L^2_e(\mathbb{T}^n)$ as $n \geq 5$.

7. Main Theorem

Note that all the theorems in this section are derived from Corollary 4.1 and Lemmas 4.3, 4.6, 6.1 and 12.

Introduce half planes and their boundary

$$G_c^l = \{ (\lambda, \mu) \in \mathbb{R}^2_{>0} : \lambda < \lambda_c \}, \quad G_c^r = \{ (\lambda, \mu) \in \mathbb{R}^2_{>0} : \lambda > \lambda_c \}, \\ \partial G_c = \{ (\lambda, \mu) \in \mathbb{R}^2_{>0} : \lambda = \lambda_c \},$$

and set

$$D_0 = G_0, \quad D_1 = G_1 \cap G_c^l, \quad D_2 = G_2 \cap G_c^l, D_{n+1} = G_1 \cap G_c^r, \quad D_{n+2} = G_2 \cap G_c^r.$$

The sets $G_0, G_2, \partial G_0, \partial G_2$ G_c^l, G_c^r create non intersecting five lines such that

$$B_0 = \partial G_0, \quad B_1 = \partial G_2 \cap G_c^l, \quad B_n = \partial G_2 \cap G_c^r,$$
$$E_1 = \partial G_c \cap G_1, \quad E_2 = \partial G_c \cap G_2,$$

Malaysian Journal of Mathematical Sciences

403

V

and one point set

V

$$E = \partial G_2 \cap \partial G_c$$

And the union of these sets are equal to $\partial G_2 \cup \partial G_c$.

Figure 1: Case $n \ge 3$

Theorem 7.1. Let $n \ge 3$. a) Assume $(\lambda, \mu) \in D_k$, $k \in \{0, 1, 2, n, n+1\}$, then $H_{\lambda\mu}$ has k eigenvalues below the essential spectrum.

b) Assume $(\lambda, \mu) \in B_k$, $k \in \{0, 1, n\}$ and n = 3, 4 $(n \ge 5)$. Then \mathfrak{e}_m is a threshold resonance (embedded eigenvalue with multiplicity one) and $H_{\lambda\mu}$ has k eigenvalues below the essential spectrum.

c) Assume $(\lambda, \mu) \in E_k$, $k \in \{1, 2\}$ and $n \geq 3$. Then \mathfrak{e}_m is a embedded eigenvalue with multiplicity n-1 and $H_{\lambda\mu}$ has no threshold resonance and has k eigenvalues below the essential spectrum.

d) Assume $(\lambda, \mu) \in E$ and n = 3, 4 $(n \geq 5)$. Then \mathfrak{e}_m is a threshold resonance and embedded eigenvalue with multiplicity n-1 (embedded eigenvalue with multiplicity n) and $H_{\lambda\mu}$ has one eigenvalues below the essential spectrum.

7.1 Case n = 2

We know in case n = 2 the sets G_c^l , G_c^r exists while this type sets do not in case n = 1, and set

 $D_1 = G_1 \cup \partial G_2 \cap G_c^l, \quad D_2 = G_2 \cap G_c^l, \quad D_2 = G_1 \cap G_c^r, \quad D_3 = G_2 \cap G_c^r,$

and non intersecting two lines

$$E_1 = \partial G_c \cap (G_1 \cup \partial G_2), \quad E_2 = \partial G_c \cap G_2,$$

and one point set

$$E = \partial G_2 \cap \partial G_c$$

And the union of the last sets are equal to $\partial G_2 \cup \partial G_c$.

Figure 2: Case n = 2

Theorem 7.2. (a) Assume $(\lambda, \mu) \in D_k$, $k \in \{1, 2, 3\}$, then $H_{\lambda\mu}$ has k eigenvalues below the essential spectrum.

(b) Assume $(\lambda, \mu) \in E_k$, $k \in \{1, 2\}$. Then \mathfrak{e}_m is a embedded eigenvalue with multiplicity 1 and $H_{\lambda\mu}$ has no threshold eigenvalue and has k eigenvalues below the essential spectrum.

7.2 Case n = 1

Set

$$D_1 = G_1 \cup \partial G_2, \quad D_2 = G_2.$$

Malaysian Journal of Mathematical Sciences

405

V

V

Figure 3: Case n = 1

Theorem 7.3. Assume $(\lambda, \mu) \in D_k$, $k \in \{1, 2\}$, then $H_{\lambda\mu}$ has k eigenvalues below the essential spectrum, and moreover $H_{\lambda\mu}$ has no threshold resonance and embedded eigenvalue.

7.3 The proof of Lemma 4.1

$$a(z) - b(z) = \frac{1}{(2\pi)^n} \int_{\mathbb{T}^n} \frac{(1 - \cos q_1)dq}{\mathfrak{e}(q) - z} = \frac{1}{n} \frac{1}{(2\pi)^n} \int_{\mathbb{T}^n} \frac{\sum_{j=1}^n (1 - \cos q_j)dq}{\mathfrak{e}(q) - z} = \frac{1}{n} \frac{1}{(2\pi)^n} \int_{\mathbb{T}^n} \frac{dq}{\mathfrak{e}(q) - z} = \frac{1}{n} \frac{1}{(2\pi)^n} \int_{\mathbb{T}^n} dq + \frac{z}{n} \int_{\mathbb{T}^n} \frac{dq}{\mathfrak{e}(q) - z} = \frac{1}{n} + \frac{z}{n} a(z);$$

$$\begin{aligned} c(z) + (n-1)(z)d &= \frac{1}{(2\pi)^n} \int_{\mathbb{T}^n} \frac{\cos q_1 \sum_{j=1}^n \cos q_j dq}{\mathfrak{e}(q) - \mathfrak{e}} = \\ & \frac{1}{(2\pi)^n} \int_{\mathbb{T}^n} \frac{\cos q_1(z - \mathfrak{e}(z)) dq}{\mathfrak{e}(q) - \mathfrak{e}} + \frac{n-z}{(2\pi)^n} \int_{\mathbb{T}^n} \frac{\cos q_1 \sum_{j=1}^n 1 dq}{\mathfrak{e}(q) - \mathfrak{e}} = (n-z)b(z) \end{aligned}$$

From the last equalities we get the proof of third equality of the lemma.

Malaysian Journal of Mathematical Sciences

 ∇

Acknowledgments

This work was partially supported by Universiti Teknology Malaysia under research MJIIT grant scheme, R.K430000.7743.4J050 Fundamental Study in Tribological Phenomena.

References

- Albeverio, S., Lakaev, S. N., Makarov, K. A., and Muminov, Z. I. (2006). The threshold effects for the two-particle hamiltonians on lattices. *Comm.Math.Phys.*, (262):91–115.
- Bellissard, J. and Schulz-Baldes, H. (2012). Scattering Theory for Lattice Operators in Dimension $d \geq 3$. Reviews in Mathematical Physics, 24:50020.
- Hiroshima, F., Sasaki, I., Shirai, T., and Suzuki, A. (2012). Note on the spectrum of discrete schraodinger operators. J. Math. Industr., (4):105–108.
- Lakaev, S. N. and Bozorov, I. N. (2009). The number of bound states of one particle hamiltonian on a three-dimensional lattice. *Theoretical and Mathematical physics*, 158(3):105–108.
- Lakaev, S. N. and Tilovova, S. M. (1994). Merging of eigenvalues and resonances of a two-particle schrödinger operator. *Theoretical and Mathematical physics*, 101(2):1320–1331.
- Mattis, D. C. (1986). The few-body problem on a lattice. *Rev. Modern Phys.*, (58):361–379.
- Newton, R. G. (1977). The generalized levinson theorem and the structure of the spectrum. J. Math. Phys., (18):1348–1357.
- Simon, B. (1981). Large time behavior of the l^p norm of schrödinger semigroups. J. Funct. Anal., (40):66–83.
- Tamura, H. (1993). The efimov effect of three–body schrödinger operators: Asymptotics for the number of negative eigenvalues. Nagoya Math. J., (130):55–83.